Disclosure Statement

DATED: 22 November 2017

Further data to comply with the Basic Disclosure Guidelines

Federal securities laws, such as Rules 10b-5 and 15c2-11 of the Securities Exchange Act of 1934 (“Exchange Act”) as well as Rule 144 of the Securities Act of 1933 (“Securities Act”), and state Blue Sky laws, require issuers to provide adequate current information to the public markets. With a view to encouraging compliance with these laws, OTC Markets Group has created these OTC Pink Basic Disclosure Guidelines. We use the basic disclosure information provided by OTC Pink companies under these guidelines to designate the appropriate tier in the OTC Pink marketplace: Current, Limited or No Information. OTC Markets Group may require companies with securities designated as “Caveat Emptor” to make additional disclosures in order to qualify for OTC Pink Current Information tier.
HYDROGEN ENGINE CENTER, INC. (Nevada)

Table of Contents

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1.</td>
<td>The exact name of the Issuer</td>
<td>3</td>
</tr>
<tr>
<td>Item 2.</td>
<td>Address of the Issuer’s principal executive offices</td>
<td>3</td>
</tr>
<tr>
<td>Item 3.</td>
<td>Securities Information</td>
<td>3</td>
</tr>
<tr>
<td>Item 4.</td>
<td>Issuance History</td>
<td>5</td>
</tr>
<tr>
<td>Item 5.</td>
<td>Issuer Business, Products and Services</td>
<td>6</td>
</tr>
<tr>
<td>Item 6.</td>
<td>Issuer facilities</td>
<td>22</td>
</tr>
<tr>
<td>Item 7.</td>
<td>Officers, Directors, and Control Persons</td>
<td>21</td>
</tr>
<tr>
<td>Item 8.</td>
<td>Warrants and Stock Options</td>
<td>24</td>
</tr>
<tr>
<td>Item 9.</td>
<td>Third Party Providers</td>
<td>25</td>
</tr>
<tr>
<td>Item 10.</td>
<td>Issuer Certification</td>
<td>26</td>
</tr>
</tbody>
</table>
All information contained in this Report has been compiled to fulfill the disclosure requirements of Rule 15c2-11 (a)(5) promulgated under the Securities and Exchange Act of 1934, as amended. The enumerated captions contained herein correspond to the sequential format as set forth in the rule.

No dealer, salesman or any other person has been authorized to give any information or to make any representations not contained herein in connection with the Issuer. Any representations not contained herein must not be relied upon as having been made or authorized by the Issuer.

Delivery of this information does not imply that the information contained herein is correct as of any time subsequent to the date of this Quarterly Report.

ITEM 1. THE EXACT NAME OF THE COMPANY

“Hydrogen Engine Center, Inc.” a Nevada corporation (referenced below as “HEC”)

ITEM 2. ADDRESS OF THE ISSUER PRINCIPAL EXECUTIVE OFFICES

Company Headquarters
203 Old Wilson Hill Road
Greeneville TN 37745
Phone (423) 278-2952
Email: hec.tinakt@gmail.com

Investor Relations Contact:
Jerry Schaub,
203 Old Wilson Hill Road
Greeneville TN 37745
Phone (423) 278-2952

Website:
Our website is under construction.

ITEM 3. SECURITY INFORMATION

Trading Symbol: HYG

The following table sets forth the high and low bid quotations for our common stock for the period from January 1, 2015 through December 31, 2016.

<table>
<thead>
<tr>
<th>Securities Outstanding:</th>
<th>High Bid</th>
<th>Low Bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Quarter ended March 31, 2015</td>
<td>.19</td>
<td>.17</td>
</tr>
<tr>
<td>Second Quarter ended June 30, 2015</td>
<td>.18</td>
<td>.14</td>
</tr>
<tr>
<td>Third Quarter ended September 30, 2015</td>
<td>.18</td>
<td>.14</td>
</tr>
<tr>
<td>Fourth Quarter ended December 31, 2015</td>
<td>.24</td>
<td>.17</td>
</tr>
<tr>
<td>First Quarter ended March 31, 2016</td>
<td>.27</td>
<td>.23</td>
</tr>
<tr>
<td>Second Quarter ended June 30, 2016</td>
<td>.30</td>
<td>.23</td>
</tr>
<tr>
<td>Third Quarter ended September 30, 2016</td>
<td>.24</td>
<td>.20</td>
</tr>
<tr>
<td>Fourth Quarter ended December 31, 2016</td>
<td>.25</td>
<td>.21</td>
</tr>
</tbody>
</table>
The foregoing quotations represent inter-dealer prices without retail mark-up, markdown, or commission, and may not represent actual transactions. CUSIP: 448876102

Date and State of Incorporation

The company was incorporated in the State of Nevada on August 3, 2000, under the name Green Mt. Labs, Inc. On August 30, 2005, the name changed to “Hydrogen Engine Center, Inc.” (HEC)

HEC Fiscal Year End Date

The Issuer’s fiscal year end is December 31

Primary and Secondary SIC Codes

Primary SIC Code: 3510

The par or stated value of the security:

A. Par or Stated Value of for each class of outstanding securities. Par value of Common Stock is $0.001.

B. Voting Rights, Dividend, Pre-emption Rights, and other matters regarding Common Stock Every shareholder of record shall be entitled at every meeting of the shareholders of the company to one vote for every share of Common Stock standing in its name on the record of the shareholders. There are no pre-emptive rights on the Common Stock of HEC.

Shares Authorized and Outstanding: As of the quarter ended September 30, 2017:

Class:

Common

Shares Authorized:

100,000,000

Shares Outstanding

50,580,471

Freely Tradable Shares (Unrestricted)

11,228,669

Number of Shareholders of Record

218

Transfer Agent Address:

Interstate Transfer Company, 1671 Roycroft PL, Suite C, Salt Lake City UT 84124, is registered under the Exchange Act.

Restrictions on the transfer of any security:

The majority of HEC Shares, 39,351,802, have not been registered under the U.S. Securities Act of 1933, as amended (the “Securities Act”) and the Shares are “restricted securities” under Rule 144 promulgated under the Securities Act (“Rule 144”).

Unfortunately, the provisions of Rule 144 that allow for the unrestricted resale of shares are not available to a holder of restricted shares issued by any company that was at any time, like HEC,
a shell company. Under current rules, holders of our restricted shares cannot have that restriction removed unless and until HEC is current on all of its periodic reports required to be filed with the SEC during the 12 months before the date of the shareholder’s resale. Until HEC is able to meet this requirement, we believe our restricted shares will continue to be “restricted securities” under Rule 144.

Describe any trading suspension orders issued by the SEC in the past 12 months:
None

List any stock split, stock dividend, recapitalization, merger, acquisition, spin-off, or reorganization either currently anticipated or that occurred within the past 36 months:

HEC incorporated HEC-TINA, Inc. (“HEC-TINA”) in Nevada on December 1, 2014. HEC-TINA is a wholly owned subsidiary of HEC.

On January 27, 2015, HEC entered into an Asset and Stock Purchase Agreement (the “TINA Agreement”) that included HEC-TINA’s acquisition of certain assets of TINA Energy Systems S.L., a Spanish Sociedad Limitada (“TINA”), including TINA’s technologies, patents and knowhow related to the design and manufacture of direct high-pressure PEM electrolyzers. As consideration for the TINA assets, HEC issued two warrants to TINA, one to purchase 7,000,000 shares at $0.15 per share and one to purchase 6,000,000 shares at $0.20 per share. The TINA Agreement also required TINA to purchase 6,000,000 shares of HEC Common Stock at $0.25 per share.

ITEM 4. ISSUANCE HISTORY

Changes in Total Outstanding Shares for the Past Two Fiscal Years. To the best knowledge of the present management of HEC, the list below identifies all events, in chronological order, that resulted in changes in total shares outstanding by HEC. The following shares were issued to TINA during the two-year periods ending December 31, 2015 and December 31, 2016 and during the three quarters ending September 30, 2017. The shares were issued under the terms of the TINA Agreement described above.

<table>
<thead>
<tr>
<th>Date</th>
<th>Number Shares</th>
<th>Price per share</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 7, 2015</td>
<td>1,168,000</td>
<td>$0.25</td>
</tr>
<tr>
<td>October 19, 2015</td>
<td>1,624,448</td>
<td>$0.25</td>
</tr>
<tr>
<td>March 8, 2016</td>
<td>400,000</td>
<td>$0.25</td>
</tr>
<tr>
<td>March 24, 2016</td>
<td>265,488</td>
<td>$0.25</td>
</tr>
<tr>
<td>April 5, 2016</td>
<td>7,000,000</td>
<td>*</td>
</tr>
<tr>
<td>May 13, 2016</td>
<td>785,200</td>
<td>$0.20</td>
</tr>
<tr>
<td>November 30, 2016</td>
<td>1,153,846</td>
<td>$0.25</td>
</tr>
<tr>
<td>November 30, 2016</td>
<td>1,366,846</td>
<td>**</td>
</tr>
<tr>
<td>May 1, 2017</td>
<td>1,014,236</td>
<td>$0.25</td>
</tr>
<tr>
<td>May 25, 2017</td>
<td>100,000</td>
<td>$0.25</td>
</tr>
</tbody>
</table>

* This included 4,069,767 shares issued upon partial exercise of a warrant to purchase 7,000,000 shares at $0.15 per share and the issuance of 2,930,233 shares upon the cashless exercise of the remaining portion of that warrant.

** These shares were issued upon the cashless exercise of portion of a warrant to purchase shares at $0.20 per share.

The Company has granted to its employees and directors options to purchase a total of 7,028,000 shares. During the two-year period ending December 31, 2016 HEC issued 380,952 shares to Mr. Blach upon his exercise of vested options at $0.21 per share.
ITEM 5. HEC BUSINESS, PRODUCTS, AND SERVICES

Description of HEC Business Operations as of the date of this report

HEC has two wholly owned subsidiaries, Hydrogen Engine Center, Inc. an Iowa Corporation (“HECI”) and HEC-TINA. HECI ceased conducting business operations on or about December 31, 2014, when the company moved operations to Greeneville, TN.

HECI began operations in 2005 and ended active operations at the end December 2014. During this period HECI produced spark-ignited internal combustion engines (ICE) fueled by gaseous fuels, including hydrogen, natural gas and propane. These ICEs were coupled to electric generators producing AC or DC electric power at frequency and voltage under the category of “ultra-light emission systems”.

Main patents

- U.S. Application No. 14/443,174, entitled “PEM-Type Electrolyzer Stack for Operation at High Pressure”. This patent was issued to TINA and is to be assigned to HEC-TINA.
- U.S. Application No. 15/243,532, entitled “Devices, Systems and Methods for Closed Loop Energy Production”. This patent was issued to Ted Hollinger with HECI as the corporate entity.
- PCT Application No. PCT/US16/48056, entitled “Devices, Systems and Methods for Closed Loop Energy Production”. This patent was issued to Ted Hollinger with HECI as the corporate entity.
- U.S. Provisional Application No. 62/342,017, entitled “Apparatus, Systems and Methods for Improved Hydraulic Roller Lifter”. This patent was issued to Ted Hollinger with HECI as the corporate entity.
- U.S. Patent 7,411,310, entitled “Precision Alignment Hub”. This patent was issued to Ted Hollinger and has been assigned to HECI.

HEC believes that HEC-TINA’s patent portfolio will have substantial value and the HEC business plan will capitalize on these technologies by transitioning HEC-TINA from Research and Development to commercialization and sales of “Power Modules”.

Power Modules are being designed as green, innovative technology systems, that will provide 24 hours per day, 7 days a week and 365 days per year access to environmentally friendly electricity that is independent from the electrical grid. Our electrolyzer, which splits water (H\textsubscript{2}O) to produce hydrogen and oxygen, can use any renewable electricity source including solar and/or wind. The operation is fully automatic and can be monitored online via satellite internet connection. Designed to manage the available renewable energy and water resources, the Power Module will meet customer needs in an innovative way that may allow access to potable water and electricity in underserved areas throughout the world.

HEC-TINA’s exclusive high-pressure electrolysis technology is capable of generating pressurized hydrogen and oxygen without the need of mechanical compression. The self-pressurizing design makes the system extremely efficient and simplifies the installation of hydrogen based storage systems. As long as you have water and electricity, this technology allows HEC-TINA to produce “ready to store” hydrogen as an energy carrier.

Focused on distributed energy systems for underserved areas of the world, HEC-TINA could provide reliable energy in areas far from large-scale electric grids or where electricity costs are high. Our technologies convert excess renewable electricity into stored hydrogen. Stored
hydrogen can be used “on demand” as a fuel for an engine generator set at a later time. This provides electricity when renewable sources such as wind or solar may not be available, (for example, nighttime, cloudy, or windless days). Our integrated Power Module provides for the energy needs of customers in remote areas without access to commercial electricity.

The process involves the assembly and production of energy modules comprised of different patented sub-systems, and consists of the promotion and commercialization of the modules. The main components and the technology related to HEC-TINA energy modules are now ready for commercialization and comply with the corresponding certification for their use with hydrogen at high pressure.

HEC-TINA’s exclusive high-pressure PEM electrolysis technology is capable of generating pressurized hydrogen and oxygen, at pressures up to 3,000 Psi, without the need of mechanical compression. The self-pressurized design makes the system efficient and simplifies the installation of hydrogen based energy production and storage systems. This technology allows HEC-TINA to produce “ready to store” hydrogen as energy carrier as long as there is water and electricity available from renewables.

HEC-TINA’s electrolyzer is the only system in the market known by HEC to be capable of turning water into hydrogen and oxygen at direct high pressures > 2,500 Psi without additional compression. Compression is one of the biggest cost factors for high-pressure hydrogen production using electrolysis.

Our modular design is intended to manage the available renewable energy and water and coordinate it in a way that meets the customer’s requirements allowing underserved populations, currently without access to electricity, to access sustainable energy, thus improving their quality of life.

The capital cost of an HEC-TINA Generator set with an average efficiency of 33% is approximately $300/kW (medium/high power) and around $600/kW (low power). The same capital power cost for a competing PEM fuel cell power system with average efficiency of around 40% is $3,000/kW to $4,000/kW.

Market analysis of the commercialization of electrolysers and generator sets in industrialized countries shows that their energy costs are very low and that the HEC-TINA system could not compete economically with large grid systems. However, an economic case can be made for green electrolyzers in developing areas or countries which have no grid and/or high electric costs. The ability to complement renewable energy production with the storage of hydrogen as an energy carrier is economically competitive. The HEC-TINA Power Module answers the question about renewable intermittent power production since the internal combustion hydrogen engine generator sets (“ICEH2”) can be used as needed or on demand.

For these reasons, our operating subsidiary HEC-TINA, is focused on distributed energy systems in underserviced countries. The special characteristics of our technologies have the capacity through renewable energy and water to produce and store hydrogen on site and to deliver electricity in the absence of renewables through our hydrogen engine generator sets (ICEH2) fueled by hydrogen. We anticipate that this capability will allow us to cover the electricity energy needs of customers in remote areas without access to commercial electricity.

Worldwide Statistics:

- More than 1.6 billion people are not connected to the electric grid.
- More than 1 billion people lack access to safe drinking water.
- Each year 1.8 million, predominantly children, die as a result of waterborne diseases.
- More than 60 million children don’t have access to elementary education.
We believe that a system that uses renewable energy sources and water to produce high pressure hydrogen without need of additional compression, equipped with an ICE\textsubscript{H2} Genset is an economically competitive system in rural and remote areas. Currently, only limited and expensive commercial electricity through greenhouse gas generating diesel generator systems which can be hybridized with expensive battery storage.

Currently, the levelized costs of energy (“LCOE”) of small to medium size (1 kW to >1 MW) hybrid distributed energy systems in remote areas are calculated over a 25-year life with the availability of energy stored to guarantee at least three daily end-user needs.

Levelized Cost of Energy

(1) Hybrid renewables (sun and/or wind) linked to batteries, diesel generator sets, or hybrid and diesel generator sets linked to batteries, have life time costs $1.50 to $3.00 per kWh

(2) We estimate that HEC-TINA renewables with stored hydrogen ICE\textsubscript{H2} will have levelized cost of $0.70 to $0.80 per kWh.

We plan to target additional cost reductions within the next 5 years for our LCOE to be $0.30/kWh or less, which would approach a competitive level in industrialized areas. The reduction is expected to be achieved as results of the following improvements in our devices:

1. Increased efficiency of our internal combustion engines through our patent pending Closed-Loop-Engine (CLE) from 33% to 40% to 45% combustion efficiency;
2. Increase of nominal hydrogen production with our new electrolyzer stack design, improvement of water and gases flow with our new plates and increased input power up to 1.0 A/cm2;
3. Reduction stack maintenance costs with utilization of special titanium alloys to better resist oxidation;
4. Reduce manufacturing cost due to economy of scale through increased number of power modules sold.

Access to electricity doesn't just improve the standard of living in a community; it changes the community entirely. By providing access to a dependable source of electricity, HEC-TINA plans to fundamentally change how “off grid” developing communities live and function. We believe HEC-TINA is in a prime position to benefit from each and every step of these communities’ development and their future demand for associated resources.

HEC-TINA’s main product is a distributed energy system that will position the HEC-TINA Power Module as a key player in renewables and the hydrogen market worldwide. Our goal is to start production and marketing in 2018 of the world’s first commercially available carbon-free, zero greenhouse gas energy system. This system will provide an integrated energy system eliminating questions about the intermittent abilities of renewables through the use of economical hydrogen storage.

We have development agreements for R&D advances for electrochemical processes and Power electronics, with the German company FeCon-WSTECH (http://www.wstech.com) that has developed a DC-DC power supply for our stacks to increase the efficiency from renewable source electric current inputs and the Estonian company TRINON (http://www.trinon.com) who currently assembles the key components of the electrolyzers stacks made by Titanium Alloys.

Markets

While many underserved areas have use for the unique HEC-TINA system, we are in the early stages of commercialization and have decided to focus our energies and marketing efforts on Southeast Asia.
HEC-TINA has focused on the Association of Southeast Asian Nations (“ASEAN”), as one of the most promising customers of our distributed energy systems. ASEAN’s eleven member countries have a combined population of approximately 625 million people. If ASEAN were a single entity, it would rank as the sixth largest economy in the world.

During 2017, Pedro Blach, Chair of the Board, met personally with officials from several ASEAN government organization including Cambodia, Myanmar, Philippines, Thailand and Malaysia. Business discussions included in depth energy specifications for 24 hours a day, 7 days a week and 365 days per year load conditions for various customers (rural clinics, schools, villages, police border quarters, etc.) range from 20 kWh/day up to 600 kWh/day. He qualified several potential customers that are looking for economic power systems solutions, for example in Sarawak (Malaysia), 55 rural clinics and 230 rural villages from 15 to 100 houses under Sarawak Energy SARES Initiative to delivery 3 kWh/day per house and another 700 villages and schools under the local government rural electrification plans. Similar numbers of potential customers have been identified in Sabah (Malaysia). The HEC-TINA Power Modules expected to be deployed in ASEAN will utilize solar energy and water as consumables. Solar energy is abundant in these areas and the average solar radiation in the zone is from 0,43 kWh/f²/day to 0,48 kWh/f²/day and water is abundant in these countries.

As result of our meetings and surveys, we have identified in ASEAN a potential market for clean power distribution systems of more than 200,000 units for onshore customers distributed within villages, clinics, schools, border police quarters, etc., which are localized in rural and remote areas without ability to have access to the grid. In Myanmar, approximately 45,000 villages are without access to electric energy from the grid. Indonesia encompasses some 17,508 islands and 9,508 are populated using mainly diesel generators to generate electricity. Transport of diesel fuel in drums and by small boats is very difficult, dangerous and expensive. Average demand of the islands is limited because of cost of energy and the HEC-TINA module can supply more economical electricity. It is a priority for the Indonesia government that the islands remain habited with Indonesia citizens to avoid any disruption of property rights with neighbors.

The present ASEAN market represents a business opportunity of more than $60 billion. HEC-TINA plans to rely on more than 80% of our product components to be made in the United States. We anticipate that this will allow HEC-TINA to have access to Exim Bank financing that grants priority to projects that promote, green energies, development of education and health. The Exim Bank financing covers up to 80% of the contract amount with 15 to 18 years’ term, currently with an interest rate of 3.56%. Interest rates offered by Exim Bank fluctuates monthly.

Aside from the Exim Bank loans, or projects related to development of underserviced countries, there is approximately $6 billion in soft loans and grants to projects from multilateral organisms, foundations and development banks based on reducing global warming and greenhouse gas emissions. Our Power Modules will produce zero carbon emissions and may qualify for some of this funding.
The HEC-TINA system operates like a hybrid car. When there is solar or wind energy available it is used to cover end-user electric demand. Solar or wind turbines are slightly over sized to cover the electrolyzer demand for the production of hydrogen that is stored in a tank. When the sun isn’t shining and the wind isn’t blowing the stored hydrogen is used to fuel the ICEH₂ generator set to produce the electricity needed for the end users demand.

In most large industrial areas, the HEC-TINA modules are not a viable replacement technology for consumers where energy resources are abundant and electricity is inexpensive. However, for underserviced countries where drinking water, communications, medical aid, oxygen, and schooling for children are unavailable for large segments of the population (due to lack of or extremely expensive electricity), and countries with high cost of electricity, e.g. Bahamas $1.50 kWh, HEC-TINA Power Modules are an extremely practical option.

We expect significant revenues generated from the sale of our Power Modules, for the electrification of rural and remote areas of the world. These locations have several drawbacks in common which could be eliminated with the HEC-TINA Power Module:

1) No grid or limited access to an electrical power grid,
2) Poor or nonexistent electric power infrastructure,
3) Limited access to inexpensive fossil fuels supplies.

These drawbacks make it difficult and expensive to utilize traditional sources of energy such competing hybrid systems based on renewables and batteries or diesel generator sets.

HEC-TINA Management Forecasted P&L for years 2019 to 2024

WARNING REGARDING PROJECTIONS AND ASSUMPTIONS

The following estimates of operating earnings and operating expenses are based on assumptions by HEC. The assumptions are based upon the experience of our management team. It is important to note that HEC-TINA is a development stage company and has no historical financial information upon which the assumptions can be based. The assumptions have not been reviewed or evaluated by any independent expert.

The assumptions by HEC are, in turn, based on present circumstances and information available to HEC. In some instances, the currently available information may be incomplete, may not necessarily include all material facts that might affect the
estimated operating results, and, in any case, may change. Therefore, the actual results to be achieved will likely vary from the estimates, and such variations may be adverse and material. The assumptions and other information included in the estimates should be carefully evaluated and analyzed in the light of circumstances then prevailing. The information set forth below, or the information on which it is based, including assumptions, both as to past events and as to the future, is subject to changes in economic conditions and other factors which cannot be predicted or assured. Nothing contained below is, or should be relied upon as, a promise or representation as to the future results of operations.

In preparing these projections we have made the following assumptions:

N.B.: We will commercialize Power Modules to delivery 30/40 kWh/day to 500 kWh/day. Sale of Power Modules in the range of higher outputs should contribute in the reduction of total units sold with similar forecast economics results.

HEC-TINA Project
Forecast P&L

<table>
<thead>
<tr>
<th></th>
<th>2019A</th>
<th>2020A</th>
<th>2021A</th>
<th>2022A</th>
<th>2023A</th>
<th>2024A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross margin</td>
<td>1,290</td>
<td>9.675</td>
<td>19.350</td>
<td>35.250</td>
<td>53.200</td>
<td>70.500</td>
</tr>
<tr>
<td>Gross Margin (%)</td>
<td>44.3%</td>
<td>44.3%</td>
<td>44.3%</td>
<td>48.5%</td>
<td>47.7%</td>
<td>48.5%</td>
</tr>
<tr>
<td>Personnel cost</td>
<td>1,140</td>
<td>1,230</td>
<td>1,620</td>
<td>1,900</td>
<td>2,100</td>
<td>2,300</td>
</tr>
<tr>
<td>Contribution Gross margin</td>
<td>150</td>
<td>8.445</td>
<td>17.730</td>
<td>33.350</td>
<td>51.100</td>
<td>68.200</td>
</tr>
<tr>
<td>Contribution margin (%)</td>
<td>5.2%</td>
<td>38.7%</td>
<td>40.6%</td>
<td>45.8%</td>
<td>43.9%</td>
<td>46.9%</td>
</tr>
<tr>
<td>Structure cost</td>
<td>187</td>
<td>500</td>
<td>580</td>
<td>620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBITDA (%)</td>
<td>(1,3%)</td>
<td>37.1%</td>
<td>39.7%</td>
<td>45.2%</td>
<td>43.4%</td>
<td>46.4%</td>
</tr>
<tr>
<td>D&A</td>
<td>(99)</td>
<td>(168)</td>
<td>(185)</td>
<td>(185)</td>
<td>(185)</td>
<td>(185)</td>
</tr>
<tr>
<td>Fixed assets</td>
<td>(95)</td>
<td>(150)</td>
<td>(156)</td>
<td>(156)</td>
<td>(156)</td>
<td>(156)</td>
</tr>
<tr>
<td>Fixed assets</td>
<td>(4)</td>
<td>(18)</td>
<td>(23)</td>
<td>(29)</td>
<td>(29)</td>
<td>(29)</td>
</tr>
<tr>
<td>Extraordinary</td>
<td>(50)</td>
<td>(100)</td>
<td>(150)</td>
<td>(250)</td>
<td>(250)</td>
<td>(350)</td>
</tr>
<tr>
<td>EBIT (186)</td>
<td>7.827</td>
<td>16.975</td>
<td>32.465</td>
<td>50.085</td>
<td>67.045</td>
<td></td>
</tr>
<tr>
<td>EBIT (%)</td>
<td>(6.4%)</td>
<td>35.9%</td>
<td>38.9%</td>
<td>44.6%</td>
<td>43.0%</td>
<td>46.1%</td>
</tr>
<tr>
<td>Financials cost</td>
<td>(48)</td>
<td>(80)</td>
<td>(80)</td>
<td>(72)</td>
<td>(56)</td>
<td>(50)</td>
</tr>
<tr>
<td>Financial incomes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EBT</td>
<td>(234)</td>
<td>7.747</td>
<td>16.895</td>
<td>32.393</td>
<td>50.029</td>
<td>66.095</td>
</tr>
<tr>
<td>Tax rate (%)</td>
<td>20.0%</td>
<td>20.0%</td>
<td>20.0%</td>
<td>20.0%</td>
<td>20.0%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Year results</td>
<td>(234)</td>
<td>7.747</td>
<td>16.895</td>
<td>32.393</td>
<td>49.023</td>
<td>53.252</td>
</tr>
<tr>
<td>Year results (%)</td>
<td>(8.0%)</td>
<td>35.9%</td>
<td>38.9%</td>
<td>44.6%</td>
<td>43.0%</td>
<td>46.1%</td>
</tr>
</tbody>
</table>
HEC-TINA “WIND & SOLAR & WATER” (WSW) Hybrid Power Module Features

Applications:
- Distributed Energy, Off the Grid powering plants, Grid Backup and Grid Stabilization System, Drinking water production, Communications via IP with Wi-Fi and WIMAX capacity, online telemedicine, online education.
- Deployed in insulated 20” or 40” Isothermal Sea Containers
- Plug Play System
- 24/7/365 electric energy available
- Ability to increase production capacity since that most of the auxiliary components are Off the Shelf
- FOB delivery period of 6 to 8 months from the date of the order
- Worldwide Internet connection via Satellite
- Direct High pressure Hydrogen & Oxygen generation (> 2500 Psi)
- Hydrogen engine generator fueled with stored hydrogen and very low maintenance due to carbon free fuel
- Optimal use and management of renewable sources
- Renewables Power conditioner and Inverters integrated in the Container
- Reliable and steady system
- Operative life 25 years
- Quick and easy on-site installation, 2 to 6 days for on-site installation and start-up
- Hydrogen available for vehicles with ICE fueled by hydrogen or PEMFC
- Oxygen available for medical services
- Integrated energy load management automatic fail safe electronic control system
- On line operation monitoring system
- Integrated and pre-assembled connection for quick electrification of off-grid areas
- Environmental working temperature range -20ºC to + 50 ºC
- Internal Container working temperature +1 ºC to +45 ºC
- Survival wind speed in std. working scenario 150 Km/h

Specifications
- Power storage available > 3 days
- Electric Configuration Single phase 110-120 V / 220-230V
- Nominal Frequency 50-60 Hz
- Container weight fully equipped 20 ft. unit 6 tons & 40 ft. 8 tons
- Nominal Power from 15kWh/day to 1 MWh/day

Control systems details

The Power Module is rated for continuous duty at maximum load alternatively it can run under variable loads from erratic renewables availability.

The Power Module uses a Programmable Logic Controller (PLC) with the proper software for fail-safe automatic operation control system. The system allows remote control via Internet satellite connection.

Details of Security and warning systems

- Pressure relief valve to prevent system overpressure
- Hydrogen and Oxygen detectors of leaks
- Protective logic hardware to ensure safe operation
- Automatic and manual emergency Shutdown as consequence of any non-accepted
operation parameter
- Warning alarms of any malfunction that is not critical

Certifications
- The proposed system is based on commercial available equipment; both for Balance of System as well as Stack are built to US NFPA69, EN1127-1 and ISO 11119-3 and TPED, PN240247 pressure vessel codes, approvable to UL codes.

HEC-TINA DEMO Power Module 00X linked to several rural Service Modules
(Workshop, School, Health Assistance, Wi-Fi and WIMAX communications)
The services offered by the HEC-TINA systems should cover all the services that a government would like to offer to its citizens. We expect that the deployment of the HEC-TINA systems will have the government support and collaboration.

Plan of manufacture and Commercialization

We are presently constructing our website, (www.hec-tina.com) to updated the company business operations focusing on manufacturing power.

HEC-TINA product description

- **Stack Assembly**: dedicated to the integration of the stacks (MEAs, CC, GDL, Pressure case, Plates and connections).
- **Electrolyzer Installation**: carries out the integration of the stack with the balance of the plant components (hydraulic subsystem, electric and electronic subsystem, etc.).
- **Modification of internal combustion engines to be fueled with hydrogen**
- **Energy module Assembly**: responsible for the assembly of equipment in 20-foot or 40-foot container
- **Quality Control, Packaging and Logistics**: this department performs a thorough check of the assembly, startup and operation of equipment manufactured. Also, Performs Factory Acceptance Testing (FACT) of complete system
- **Shipping and Pre-Installation**: responsible for coordination with the customer for shipping and preparation of site for installation of the the Power Module upon arrival
- **Installation and Training**: Co-ordinate with customer the installation at site, commissioning the Power Module and the follow-up of the equipment to meet any maintenance need, including operation & simple maintenance training and scheduled replacement of components.
- **Administration and Finance**

HEC-TINA’s plans, which have been discussed with selected ASEAN official organizations, are to ship two demo power modules during the first half of 2018. Both modules will be deployed with the assistance of local partners with well know financial and technical capacity that will take care of the commercial tasks and the future operation and maintenance of the modules. We plan to deploy one of the modules in Kuala Lumpur (Malaysia peninsula) or in Kuching (Sarawak) and the second in Bangkok (Thailand) or Manila (Philippines). Final site selection is currently being analyzed by commercial partners.

In 2018, HEC-TINA plans to participate with our commercial partners to exhibit in one or two of the ASEAN Conference and Exhibitions which focus on carbon-free, renewables energy. The installation of a demonstration power module in Malaysia has been a priority request from the Sarawak Deputy Minister of Health and Sarawak Energy in order to evaluate the ability to power rural clinics and villages under their envisioned rural Sarawak electrification plans.

HEC-TINA’s management believes that, based on the commercial operation of the first two Power Modules, HEC-TINA will be ready to begin of significant purchased orders and sales late in 2018 or in 2019. Commercialization plans should provide HEC-TINA the following benefits:

- Strategic ability to grow financing instruments with the needs of the business (This allows for more flexibility in a company with a steep growth curve to adapt)
- Ability to generate a profit by lowering the cost of financing orders over time.

HEC-TINA’s future product portfolio currently in development includes:

- High capacity production stack up to 15 nm3 H2 /hour with current input from 1 Acm2
to 1.5 Acm² with cells of 250 mm * 250 mm;

- Partnership for commercial supply of engine generator set with major equipment vendor;
- Electrolyzers with hydrogen direct output pressure of >3,500 Psi.

Risks and uncertainties

This discussion contains forward-looking statements that involve risks and uncertainties. Our actual results will depend upon a number of factors beyond our control and could differ materially from those anticipated in the forward-looking statements. Some of these factors are discussed below and elsewhere in this form.

Since the company’s inception, we have incurred substantial operating losses and expect to incur additional operating losses in 2017. We have financed operations since inception primarily through equity and debt financings. We anticipate our expenses will increase significantly once we obtain sufficient capital to expand our operations.

Our auditors have indicated in their report on our financial statements for the fiscal year ended December 31, 2016, that conditions exist that raise substantial doubt about our ability to continue as a going concern. Management believes that the actions presently being taken to implement its business plan and generate revenue provide the opportunity for the company to continue as a going concern. While the company believes in the viability of its strategy to generate revenues and in its ability to raise additional funds, there can be no assurances to that effect. The ability of the company to continue as a going concern is dependent upon the company’s ability to further implement its business plan and generate revenues. The financial statements do not include any adjustments that might be necessary if the company is unable to continue.

HEC-TINA is a development stage enterprise and, as such, our continued existence is dependent upon our ability to resolve our liquidity problems, principally by obtaining additional debt or equity financing. We have yet to generate a positive internal cash flow, and until meaningful sales of our products begin, we are dependent upon debt and equity funding.

We intend to aggressively pursue sales of our turnkey Power Modules. We believe that we are ideally positioned to take advantage of the tremendous growth projected for local power systems and for greenhouse gas reduction. We believe our systems can make power available 24/7/365 for our customers.

The Company is subject to risks from, among other things, competition associated with the industry in general, other risks associated with financing, liquidity requirements, rapidly changing customer requirements and technologies and limited operating history. Although there are several companies developing and/or marketing electrolyzers and hydrogen engines, we are not aware at this date of any significant production of our type of technology of this date. We believe that the competition is targeting production for hydrogen-fueled vehicles. This is a different customer requirement than the distributed energy system we are pursuing. Most of the competitors are targeting larger hydrogen generation systems and are powering them with utility power. Hydrogen filling stations are an example of this.

Other competitors and potential competitors involved in the manufacturer of electrolyzers mainly include Giner, Hydrogenics, ITM-Power, and Proton Onsite. In the Fuel cell field companies such as Ballard, Plug Power, Fuel Cell Energy, SFC Energy, Intelligent Energy, should be also considered competitors.

Fuel cells may be perceived to be competition to our generator sets equipped with internal combustion engines fueled by Hydrogen, but we believe they are not at this time. Fuel cells cannot be currently manufactured in sufficient quantity to compete with hydrogen and other
alternative fuel internal combustion engines. Also, fuel cells are more expensive than the hydrogen internal combustion engines.

Many existing and potential competitors have greater financial resources, larger market share, and larger production and technology research capability, which may enable them to establish a stronger competitive position than we have, in part through greater marketing opportunities, however, we believe our lead in technology is an asset in that it will take a large investment in time and money to duplicate what we have already achieved.

There can be no assurance that potential competitors of HEC, which may have greater financial, research and development, sales and marketing and personnel resources than the company, are not currently developing, or will not in the future develop products and processes that are equally or more effective and/or economical as the products developed by HEC-TINA or which would otherwise render HEC-TINA’s products obsolete.

the company may be forced to change the nature of its business as a result of competitive factors. Given the potential of hydrogen derived energy in general, it is anticipated that the market will become increasingly competitive over the coming years.

Recent events point a global economic uneasiness and a global economic downturn is not out of the possibility. HEC-TINA solutions are targeted at lowering costs and increasing competitiveness and these are objectives, which in difficult times can be perhaps delayed – but not eliminated.

Our business may be affected by the general risks associated with all companies in the energy industry. The prices received for HEC-TINA’s goods and products depend on numerous factors, many of which are beyond its control and the exact effect of which cannot be accurately predicted. Such factors include general economic and political activities, including the extent of government regulation and taxation.

We believe that the company’s future success will greatly depend on the expertise and continued services of certain key executives and technical personnel. The Company cannot guarantee the retention of such key executives and technical personnel. As a result, the company’s business, its results of operations and financial condition may be adversely affected. The company’s ability to implement its business strategy may be adversely affected by factors we cannot currently foresee, such as unanticipated costs and expenses, interruptions to or delays in production, reduced demand for the company’s products and technology. All of these factors may necessitate changes to the business strategy described in this document.

The company has been technology driven in the past and will continue to strengthen its capacity to deliver novel systems, it must be able to continue to invest in R&D. Should such funds may not be available for an extended period of time, HEC-TINA will be able to reach profitability but at a slower rate.

The company faces a number of industrial risks such as a dispute with its workforce and dependence on key suppliers, both of which may lead to a deterioration in financial performance. Like any hi-tech company that relies on technology for its competitive advantage, HEC-TINA is potentially vulnerable to intellectual property (IP) theft. In HEC-TINA’s case, its technology is very specialized, and the knowhow associated with production does not reside in any one person’s knowledge. Furthermore, very important and critical elements of the HEC-TINA IP are patent protected. HEC-TINA is therefore protected as most – if not more – against such theft risk.

While the company believes that there continues to be viable markets for its products, there can be no assurance that HEC-TINA’s products will prove to be more successful than competing products in the future. If HEC-TINA’s products do not gain further market acceptance, further
expenditure on marketing and development may be required to make them commercially viable. The Company intends to continue to expand internationally and therefore its results could be affected significantly by currency fluctuations. Other risks from international business activities include complying with regulatory requirements and standards, tariffs and other trade barriers, reliance on third parties to distribute products and potentially adverse tax consequences.

There can be no guarantee that orders will be received for HEC-TINA’s products in the anticipated volumes or within the time frames envisioned by the company. The placing of orders for HEC-TINA’s products could be materially delayed by circumstances such as customer evaluations or integration of HEC-TINA’s products taking longer than anticipated. The Company must also ensure that production capacity is at all times sufficient to match the level of orders. Failure to do so could lead to the financial impact of inefficient production, missed sales opportunities and late delivery to customers.

Principal Suppliers

We outsource manufactured parts and bring them into our production facility as components ready for the assembly line. We then assemble all components to produce our products.

Parts are purchased for our electrolyzer, engine generator and balance of plant sets from several different industrial parts suppliers. The parts are sourced from destinations located throughout the world. Parts are pre-tested for quality and then integrated into subsystems of the module and tested at our Greeneville facility. Once Power Module is completed, thorough system shakedown is done.

There are risks and uncertainties with respect to the supply of certain component parts that could impact availability in sufficient quantities to meet our needs. If, for any reason, a manufacturer is unable or refuses to manufacture our component parts, our business, financial condition and results of operations would be materially and adversely affected.

Dependence on One or Few Major Customers

We do not anticipate dependence on one or a few major customers at this time.

Intellectual Property and Patent Protection

HEC-TINA is building its vision of carbon-free energy independence through the development and commercialization of clean solutions for today’s energy needs. We have been working to expand our intellectual property portfolio and developing technologies to allow for future enhanced efficiencies to generate and use clean power where needed.

We believe that our developing technologies have the potential to revolutionize our world by removing the political and environmental problems generated by our ever-increasing appetite for energy sources.

We have a number of patents pending and a number of potential patents in the development stage. These patents relate to hydrogen and ammonia production, energy efficiency and the use of hydrogen, ammonia and other alternative fuels for the production of cleaner energy. We also rely on trade secrets, common law trademark rights and trademark registrations. We intend to protect our intellectual property via non-disclosure agreements, license agreements and limited information distribution.
Cost of Compliance with Environmental Laws

We outsource all manufactured parts and bring them into our production facility as components ready for the assembly line. We then assemble all components to produce our products. The assembly process uses no hazardous materials nor do they create any hazardous waste.

Written procedures are designed to meet current environmental and fire code laws. Any changes in the laws at the state or federal level could require us to modify our procedures to comply with future environmental regulations.

Employees

As of September 30, 2017, HEC-TINA had 9 employees, 6 were full time and 3 outsourcing technical assistants. Our employees are not members of any union, and they have not entered into any collective bargaining agreements. We believe that our relationship with our employees is good.

Additional financing is required to proceed with our anticipated business activities.

We are currently exploring a variety of opportunities to obtain additional capital as a private placement. There is no assurance that we will be able to raise the necessary capital or that the capital, if available, will be available on terms that will be acceptable to us. If adequate funds are not available or are not available on acceptable terms, our ability to fund our operations, take advantage of opportunities, develop products and technologies, and otherwise respond to competitive pressures could be significantly delayed or limited, and we may need to downsize or halt our operations. If we are not able to obtain the needed financing in a timely fashion, our ability to achieve profitability will be materially impaired.

We have a limited operating history and have not recorded an operating profit since our inception.

The potential for us to generate profits depends on many factors, including the following:

• timely receipt of required financing;
• successful pursuit of our research and development efforts;
• protection of our intellectual property;
• quality and reliability of our products;
• ability to attract and retain a qualified work force in a small town;
• size and timing of future customer orders, milestone achievement, product delivery and customer acceptance;
• success in maintaining and enhancing existing strategic relationships and developing new strategic relationships with potential customers;
• actions taken by competitors, including suppliers of traditional engines, hydrogen fuel cells and new product introductions and pricing changes;
• reliability of our suppliers,
We cannot assure you that we will achieve success as to any of the foregoing factors or realize profitability in the immediate future or at any time.

Our future success depends in part on our ability to retain key employees. We currently do not carry "key man" insurance on our executives; however, we are considering the purchase of such insurance. It would be difficult for us to replace any one of these individuals. In addition, as we grow we will need to hire additional key personnel.

Our products may contain design faults.

Though we believe it unlikely, the technologies we have developed and are developing, and the products we produce in our new facility, could contain undetected design faults despite our careful design and testing. We may not discover these faults or errors until after our customers have used a product. Any such faults or errors may cause delays in product introduction and shipments, require design modifications, or harm customer relationships, any of which could adversely affect our business and competitive position. We understand that customer service is an important part of our mission and we feel poised to address any issues that may arise. If we are unable to successfully address any such issues, our results of operation could be materially and adversely affected.

Acceptance of hydrogen as an alternative fuel will affect our ability to achieve commercial application of our products and technologies.

With proper precaution, we believe that hydrogen could be as safe as any other fuel. The main benefit of hydrogen as a fuel is that it produces little or no pollution or greenhouse gases when it is used in an internal combustion engine. The development of a market for our technologies may be impacted by many factors, including:

- consumer perception of the safety of hydrogen and willingness to use engines powered by hydrogen;
- adverse regulatory developments, including the adoption of onerous regulations regarding hydrogen use or storage;
- barriers to entry created by existing energy providers; and
- the emergence of new competitive technologies and products.

Certain government regulations concerning electrical and hydrogen generation, delivery and storage of fuels and other related matters may negatively impact our business.

Our business is subject to and affected by federal, state, local, and foreign laws and regulations. These may include state and local ordinances relating to public safety, electrical and hydrogen production, delivery and refueling infrastructure, hydrogen storage, and related matters. We do not know the extent to which any such regulations may impact our business or our customers’ businesses. Any new regulation may increase costs and could reduce our potential to be profitable.

We believe that we carry a reasonable amount of insurance. However, there can be no assurance that our existing insurance coverage would be adequate in term and scope to protect us against material financial effects in the event of a successful claim.

We could be subject to claims in connection with the products that we plan to sell. There can be no assurance that we would have sufficient resources to satisfy any liability resulting from any such claim, or that we would be able to have our customers indemnify or insure us against any
such liability. There can be no assurance that our insurance coverage would be adequate in term
and scope to protect us against material financial effects in the event of a successful claim.

If we fail to keep up with changes affecting our technology and the markets that we will
ultimately serve, we will become less competitive and future financial performance would
be adversely affected.

In order to remain competitive and serve our potential customers effectively, we must respond
on a timely and cost-efficient basis to the need for new technology, as well as changes in
technology, industry standards and procedures, and customer preferences. We will need to
continuously develop new technology, products, and services to address new technological
developments. In some cases, changes may be significant and the cost of implementation may
be substantial. We cannot assure you that we will be able to adapt to any changes in the future
or that we will have the financial resources to keep up with changes in the marketplace. Also,
the cost of adapting our technology, products, and services may have a material and adverse
effect on our operating results.

We do not anticipate paying dividends in the foreseeable future. This could make our
stock less attractive to potential investors.

Any future payment of cash dividends will be at the discretion of our board of directors after
taking into account many factors, including our operating results, financial condition, and
capital requirements. Corporations that pay dividends may be viewed as a better investment
than corporations that do not.

The authorization and issuance of blank-check preferred stock may prevent or discourage
a change in our management.

The company’s Articles authorize the issuance of up to 100,000,000 shares of Common Stock,
par value $0.001 per share and 10,000,000 shares of preferred stock, par value $0.001 per share.
As of August 8, 2017, there are 50,580,471 shares of Common Stock outstanding. No shares of
Preferred Stock are outstanding.

It may be difficult for a third party to acquire us, and this could depress our stock price.

Nevada corporate law includes provisions that could delay, defer, or prevent a change in control
of our company or our management. These provisions could discourage information contests
and make it more difficult for stockholders to elect directors and take other corporate actions.
As a result, these provisions could limit the price that investors are willing to pay in the future
for shares of our common stock. For example:

• Without prior stockholder approval, the board of directors has the authority to issue
 one or more classes of preferred stock with rights senior to those of common stock
 and to determine the rights, privileges, and preferences of that preferred stock;

• There is no cumulative voting in the election of directors; and

• Stockholders cannot call a special meeting of stockholders.

Inherent Limitations Over Internal Controls

Our internal control over financial reporting is designed to provide reasonable assurance
regarding the reliability of financial reporting and the preparation of financial statements for
external purposes in accordance with generally accepted accounting principles. Our internal
control financial reporting includes those policies and procedures that:
(i) pertain to the maintenance of records that, in reasonable detail, accurately and fairly reflect the transactions and disposition of our assets;

(ii) provide reasonable assurance that transactions are recorded as necessary to permit preparation of financial statements in accordance with generally accepted accounting principles, and that our receipts and expenditures are being made only in accordance with authorizations of our management and directors; and

(iii) provide reasonable assurance regarding prevention or timely detection of unauthorized acquisition, use, or disposition of our assets that could have a material effect on the financial statements.

Our auditors have not performed an audit of our internal controls over financial reporting. We do not expect that our internal controls will prevent or detect all errors and all fraud. A control system, no matter how well designed and operated, can provide only reasonable, not absolute, assurance that the objectives of the control system are met. Further, the design of a control system must reflect the fact that there are resource constraints, and the benefits of controls must be considered relative to their costs. Because of the inherent limitations in all control systems, no evaluation of internal controls can provide absolute assurance that all control issues and instances of fraud, if any, have been detected. Also, any evaluation of the effectiveness of controls in future periods are subject to the risk that those internal controls may become inadequate because of changes in business conditions, or that the degree of compliance with the policies or procedures may deteriorate.

Contingencies

If the assessment of a contingency indicates it is probable that a material loss has been incurred and the amount of the liability can be estimated, then the estimated liability would be accrued in HEC’s financial statements. If the assessment indicates that a potential material loss contingency is not probable but is reasonably possible, or is probable but cannot be estimated, then the nature of the contingent liability, together with an estimate of the range of possible loss if determinable and material would be disclosed. Loss contingencies considered to be remote by management are generally not disclosed unless they involve guarantees, in which case the guarantee would be disclosed.

ITEM 6. ISSUER FACILITIES

The HEC-TINA industrial facilities are located at 203 Old Wilson Hill Road, Greeneville, Tennessee. The facilities consist of three buildings with a total area of 42,000 square feet on 5.92 acres. Presently we utilize one of the buildings with 12,000 square feet and plan to lease the other two buildings for approximately $15.00 per square feet plus utilities to cover our own utilities and the current $2,200 monthly interest payment on the loan incurred for the purchase of the building. The sale of the Building is contemplated offering to the buyer a lease back agreement.
ITEM 7. ISSUER OFFICERS, DIRECTORS, AND CONTROL PERSONS

Officers and Directors as at September 30, 2017

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>William Ayres</td>
<td>203 Old Wilson Hill Road, Greeneville TN 37745</td>
<td>President & CEO</td>
</tr>
<tr>
<td>Ted Hollinger</td>
<td>215 Appian Way, Greeneville TN 37745</td>
<td>Member of the BOD</td>
</tr>
<tr>
<td>Allen Jones</td>
<td>203 Old Wilson Hill Road, Greeneville TN 37745</td>
<td>Secretary & Treasurer</td>
</tr>
<tr>
<td>Pedro Blach</td>
<td>Apart. 13A Devonshire St, Cable Beach, New Providence, Bahamas</td>
<td>COB & CFO</td>
</tr>
<tr>
<td>Jerry Schuab</td>
<td>3229 Stone Court, Marin IA 52302</td>
<td>Shareholder relations</td>
</tr>
<tr>
<td>Kim Tilson</td>
<td>203 Old Wilson Hill Road, Greeneville TN 37745</td>
<td>Assistant to the COB</td>
</tr>
</tbody>
</table>

Involvement in Certain Legal Proceedings

None of the officers, directors, promoters or control persons of HEC have been involved in the past five (5) years in any of the following:

1. Conviction in a criminal proceeding or named as a defendant in a pending criminal proceeding excluding traffic violations and minor offenses;

2. The entry of an order, judgment, or decree, not subsequently reversed, suspended or vacated, by a court of competent jurisdiction that permanently or temporarily enjoined,
barred, suspended or otherwise limited such person’s involvement in any type of business, securities, commodities or bank activities;

(3) A finding or judgment by a court of competent jurisdiction (in a civil action), the Securities and Exchange Commission, the Commodity Futures Trading Commission, or a state securities regulator of a violation of federal or state securities or commodities law, which finding or judgment has not been reversed, suspended, or vacated; or

(4) The entry of an order by a self-regulatory organization that permanently or temporarily barred suspended or otherwise limited such person’s involvement in any type of business or securities activities.

The Company utilizes outsourcing services for the accounting and auditing of its financials

Beneficial owners, including directors and employees and management

The following table sets forth the security and beneficial ownership for each class of equity securities of HEC for any person who is known to be the beneficial owner of more than five percent (5%) of HEC and for all officers and directors of HEC as of September 30, 2017. Except described below, the security ownership of each of the above beneficial owners is also the owner of record for the like number of shares.

<table>
<thead>
<tr>
<th>Title of Class</th>
<th>Name and Address of Beneficial Owner</th>
<th>Amount and Nature of Beneficial Ownership</th>
<th>Percent of Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td>Theodore G. Hollinger</td>
<td>15,206,772</td>
<td>29.14%</td>
</tr>
<tr>
<td></td>
<td>215 Appian Way</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greeneville TN 37745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>William A. Ayres</td>
<td>982,421</td>
<td>1.91%</td>
</tr>
<tr>
<td></td>
<td>1621 Industrial Road Unit B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greeneville TN 37745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Gerald D. Schaub & Carol J. Schaub</td>
<td>966,667</td>
<td>1.88%</td>
</tr>
<tr>
<td></td>
<td>3229 Stone Court</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marin IA 52302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Gary L. Gunderson and Diana M.</td>
<td>3,009,436</td>
<td>5.95%</td>
</tr>
<tr>
<td></td>
<td>Gunderson</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>180 Highway 51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Postville, IA 52162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Allen Jones</td>
<td>200,000</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>1621 Industrial Road Unit B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greeneville TN 37745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>TINA Energy Systems</td>
<td>18,903,136</td>
<td>35.56%</td>
</tr>
<tr>
<td></td>
<td>C/Alcala nº59-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Madrid 28014 Spain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Victor Cordell</td>
<td>100,000</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>2423 Northwest Awbry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Road Bend, OR 97701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Pedro Blach</td>
<td>800,000</td>
<td>1.57%</td>
</tr>
<tr>
<td></td>
<td>Apart. 13A Devonshire St</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cable Beach</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Providence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bahamas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
* Less than 1%

1. Includes 38,505 shares held by Mr. Hollinger’s wife and currently exercisable options to purchase 1,600,000 shares for $0.11 per share. Mr. Hollinger holds options to purchase another 400,000 shares for $0.11 per share, which will become exercisable March 18, 2018.

2. Includes 2,500 shares owned jointly by William A. Ayres and Patricia L. Ayres as well as currently exercisable options to purchase 800,000 shares for $0.11 per share. Mr. Ayres holds options to purchase another 200,000 shares for $0.11 per share, which will become exercisable March 18, 2018.

3. Includes currently exercisable options to purchase 800,000 shares for $0.11 per share. Mr. Schaub holds options to purchase another 200,000 shares for $0.11 per share, which will become exercisable March 18, 2018.

4. Includes options to purchase 200,000 shares for $0.17 per share, 100,000 of which are currently exercisable and 100,000 of which will become exercisable October 29, 2017. Mr. Jones holds options to purchase another 200,000 shares for $0.17 per share 100,00 of which will become exercisable on October 29, 2018 and October 29, 2019. Mr. Jones resigned from the Board and as an officer of HEC in October 2017

5. Includes the agreement to purchase an additional 565,185 shares at $0.25 per share under the terms of a Stock Purchase Agreement dated November 30, 2016. See Note #9 below.

6. Comprised of options to purchase shares of common stock at $0.20 per share. Mr. Cordell holds options to purchase another 300,000 shares at $0.20 per share, which will become exercisable annually in increments of 100,000 on June 1, 2018, 2019, and 2020. Mr. Cordell resigned from the Board in October 2017

7. Includes options to purchase shares of common stock at $0.21 per share. Mr. Blach holds options to purchase another 1,200,000 shares at $0.21 per share which will become exercisable annually in increments of 400,000 on March 9, 2018, 2019, and 2020. See Note #9 below.

8. Applicable percentages of ownership are based on 50,580,471 shares of Common Stock outstanding as of August 8, 2017. For each shareholder holding exercisable options (or options exercisable within 60 days), or under an agreement to purchase shares, the percentage of ownership has been calculated assuming that such options have been exercised and such shares have been purchased.

9. Mr. Blach is an affiliate of TINA Energy Systems. The combined holdings of Mr. Blach and TINA Energy Systems, including the exercisable options and the agreement to purchase shares as described above, total 19,683,136 shares, or 38.17%.

Item 8. Warrants and Stock Options.

The Company accounts for common stock warrants as either equity instruments or derivative liabilities depending on the specific terms of the warrant agreement. Common stock warrants are accounted for as derivative liabilities if the stock warrants allow for cash settlement or provide for modification of the warrant exercise price in the event subsequent sales of common stock are at a lower price per share than the then-current warrant exercise price. The warrants issued were accounted as an equity instrument.
As of 30 September 2017, Outstanding Warrants and Options are:

<table>
<thead>
<tr>
<th>NAME</th>
<th>Grant Date</th>
<th>Price</th>
<th>Initial Grant</th>
<th>Cancellations & Exercises</th>
<th>Subtotal Grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted Hollinger</td>
<td>13/3/14</td>
<td>0.110</td>
<td>2.000.000</td>
<td></td>
<td>2.000.000</td>
</tr>
<tr>
<td>William Ayres</td>
<td>13/3/14</td>
<td>0.110</td>
<td>1.000.000</td>
<td></td>
<td>1.000.000</td>
</tr>
<tr>
<td>Gerry Schaub</td>
<td>13/3/14</td>
<td>0.110</td>
<td>1.000.000</td>
<td></td>
<td>1.000.000</td>
</tr>
<tr>
<td>Allen Jones</td>
<td>10/29/2015*</td>
<td>0.170</td>
<td>400.000</td>
<td></td>
<td>400.000</td>
</tr>
<tr>
<td>Ted Hollinger</td>
<td>7/19/2016*</td>
<td>0.215</td>
<td>1.000</td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>Bryan Gillespie</td>
<td>7/19/2016*</td>
<td>0.215</td>
<td>2.000</td>
<td></td>
<td>2.000</td>
</tr>
<tr>
<td>Jesse Williams</td>
<td>8/6/2015*</td>
<td>0.110</td>
<td>10.000</td>
<td></td>
<td>10.000</td>
</tr>
<tr>
<td>Kim Tilson</td>
<td>7/19/2016*</td>
<td>0.215</td>
<td>4.000</td>
<td></td>
<td>4.000</td>
</tr>
<tr>
<td>Victor Cordell</td>
<td>6/1/2016*</td>
<td>0.200</td>
<td>400.000</td>
<td></td>
<td>400.000</td>
</tr>
<tr>
<td>Bryan Neas</td>
<td>2/6/2017*</td>
<td>0.209</td>
<td>200.000</td>
<td></td>
<td>200.000</td>
</tr>
<tr>
<td>Pedro Blach</td>
<td>9/3/17</td>
<td>0.210</td>
<td>2.000.000</td>
<td>380.000</td>
<td>1.620.000</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>7.028.000</td>
<td>380.000</td>
<td>6.648.000</td>
</tr>
</tbody>
</table>

*options granted under the Corporation’s 2015 Incentive Compensation Plan

ITEM 9. Third Party Providers

Legal Counsel
Davis Brown Law Firm
215 10th St.
Suite 1300
Des Moines, IA 50309
515-288-2500
http://www.davisbrownlaw.com.com

Accountants
Craine, Thompson & Jones, P.C.
225 W First North St
Morristown, TN 37814
423-586-7650
www.ctandj.net

Auditors
Rodefer Moss & Co, PLLC
608 Mabry Hood Road | Knoxville, TN 37932
865.684.1956 Direct 865.583.0091 Office
http://www.rodefermoss.com

Investor Relations
Jerry Schuab
3229 Stone Court
Marin IA 52302
319-540-2383

Consultant
None
ITEM 10. Issuer Certification

I, William A. Ayres, certify that:

1. I have reviewed this disclosure statement of Hydrogen Engine Center, Inc., a Nevada corporation.

2. Based on my knowledge, this disclosure statement does not contain any untrue statement of material fact or omit to state a material fact necessary to make the statements made, in light of the circumstances under which the statements were made, not misleading with respect to the period covered by this disclosure statement.

3. Based on my knowledge, the financial statements, and other financial information included or incorporated by reference in this disclosure statement, fairly present in all material respects the financial condition, results of operations and cash flows of the issuer as of, and for, the periods presented in this disclosure statement.

Dated: November 22, 2017

William A. Ayres
President, and CEO

I, Pedro Blach, certify that:

1. I have reviewed this disclosure statement of Hydrogen Engine Center, Inc., a Nevada corporation.

2. Based on my knowledge, this disclosure statement does not contain any untrue statement of material fact or omit to state a material fact necessary to make the statements made, in light of the circumstances under which the statements were made, not misleading with respect to the period covered by this disclosure statement.

3. Based on my knowledge, the financial statements, and other financial information included or incorporated by reference in this disclosure statement, fairly present in all material respects the financial condition, results of operations and cash flows of the issuer as of, and for, the periods presented in this disclosure statement.

Dated: November 22, 2017

Pedro Blach
Chief Financial Officer